
Towards Evolving Electronic Circuits for
Autonomous Space Applications

Jason D. Lohn

Computational Sciences Division

NASA Ames Research Center

Moffett Field, CA 94035

jlohn@ptolemy.arc.nasa.gov

Gary L. Haith

Recom Technologies Corp.

NASA Ames Research Center

Moffett Field, CA 94035

haith@ptolemy.arc.nasa.gov

Silvano P. Colombano

Computational Sciences Division

NASA Ames Research Center

Moffett Field, CA 94035

scolombano@mail.arc.nasa.gov

Dimitris Stassinopoulos

Computational Sciences Division

NASA Ames Research Center

Moffett Field, CA 94035

stassi@ptolemy.arc.nasa.gov

Abstract— The relatively new field of Evolvable Hard-
ware studies how simulated evolution can reconfigure,
adapt, and design hardware structures in an automated
manner. Space applications, especially those requiring
autonomy, are potential beneficiaries of evolvable hard-
ware. For example, robotic drilling from a mobile plat-
form requires high-bandwidth controller circuits that are
difficult to design. In this paper, we present automated
design techniques based on evolutionary search that
could potentially be used in such applications. First,
we present a method of automatically generating analog
circuit designs using evolutionary search and a circuit-
construction language. Our system allows circuit size
(number of devices), circuit topology, and device values
to be evolved. Using a parallel genetic algorithm, we
present experimental results for five design tasks. Sec-
ond, we investigate the use of coevolution in automated
circuit design. We examine fitness evaluation by compar-
ing the effectiveness of four fitness schedules. The results
indicate that solution quality is highest with static and
coevolving fitness schedules as compared to the other
two dynamic schedules. We discuss these results and of-
fer two possible explanations for the observed behavior:
retention of useful information, and alignment of prob-
lem difficulty with circuit proficiency.

Table of Contents

1. Introduction

2. Circuit Representaion

3. Design Tasks

4. Experimental Results

5. Coevolution and Other Fitness Schedules

6. Experimental Setup

7. Experimental Results

8. Discussion

1 Introduction

Although the underlying concepts of using simulated
evolution to manipulate hardware are decades old, it is
only in recent years that research in this area has at-
tracted significant interest [17, 6, 18, 19]. The nascent
field of evolvable hardware studies how simulated evolu-
tion can reconfigure, adapt, and design hardware struc-
tures in an automated manner. The field is almost ex-
clusively concerned with electronic circuitry, but appli-
cation areas where other types of physical structures are
designed or adapted by artificial evolution certainly fall
within the purview of evolvable hardware (e.g., designs
of trusses, antennas).

Research on using evolution to automatically create
novel circuit designs can be classified into two categories:
analog and digital circuitry. In the digital circuit do-
main, the Field-Programmable Gate Array (FPGA) [22]
has played a crucial role. The FPGA is a chip that con-
tains a large array of logic gates (e.g., AND, OR) and a
user-modifiable interconnection network to connect ele-
ments together. The distinguishing feature of the FPGA
is its ability to be programmed as many times as needed.
Each time the FPGA is re-programmed (the act of which
is commonly called reconfiguration) for new functional-
ity, the interconnections and gate logic change. This
software-changes-hardware paradox is reconciled by the
fact that the physical devices on the chip never change,
only the way signals are routed through the chip changes.
In practice, these chips are typically programmed to per-
form a desired function and are rarely re-programmed.
However, in an evolvable hardware setting, theses chips
are re-programmed over and over as evolution repeatedly
tests new designs. The important point is that the hard-
ware is nestled inside of the evolutionary process, allow-

ing for rapid solution testing (a common bottleneck in
many evolutionary algorithms). Some of the pioneering
work in this area was done by Higuchi [5] and Thomp-
son [21].

The other circuit design domain and the focus of this
paper is analog circuitry. Analog circuits are of great
importance in electronic system design since the world
is fundamentally analog in nature. While the amount
of digital design activity far outpaces that of analog de-
sign, most digital systems require analog modules for
interfacing to the external world. Techniques for analog
circuit design automation began appearing about two
decades ago (e.g., [20]). Efforts using techniques from
evolutionary computation have appeared over the last
few years. These include the use of genetic algorithms
(GAs) [7] to select filter component sizes [8], to select
filter topologies [3], and to design operational amplifiers
using a small set of topologies [12]. Various analog filter
design problems have been solved using genetic program-
ming (e.g., [11]), and an overview of these techniques, in-
cluding eight analog circuit synthesis problems, is found
in [10].

In space applications, automated/evolutionary design
of analog circuitry could hold many benefits, especially
for controller hardware. In problems where actuator out-
puts need to be rapidly modulated in response to sen-
sor feedback, analog circuits have some clear advantages
over digital circuits. Digital control circuits necessitate
a costly bandwidth-limiting analog to digital conversion
(ADC) of the sensor signal and then a reverse conversion
(DAC) from the processed digital signal to the analog
actuator control output. These transformations lose in-
formation and introduce latency. In many tasks the high
frequency component of the sensor signal that is lost in
the analog to digital conversion is crucial to usefully con-
trolling the actuators. For example, to implement force
control of a robotic manipulator, a critical portion of the
strain sensor signal is lost during conversion from analog
to digital. In such cases, analog circuits are ideal because
they provide a very high bandwidth sensor-to-motor sig-
nal transformation and avoid any time-consuming con-
version between analog and digital signals.

Although robotic controller technology has greatly im-
proved over the last decade, certain advanced robotic ap-
plications cannot be realized due to limitations in con-
troller processing speed, size, and power consumption.
Two such applications are robotic drilling and real-time
rover-astronaut interaction. Drilling from a mobile plat-
form is difficult because the drill bit forces and position
can shift rapidly causing damage to the bit – a fast force
control loop could alleviate these difficulties. Rover-
astronaut interactions are severely limited by rover speed
and autonomy, both of which would benefit greatly from
fast control loops. To overcome the main limitation of
using analog controllers, namely the difficulty designing
analog circuits, the evolvable hardware techniques pre-
sented below could be applied to automatically generat-

ing controller circuit designs.

The remainder of the paper is as follows. First we dis-
cuss the genetic representation of analog circuits and de-
scribe the genetic algorithm that is used. Then we cover
the design tasks and the experimental results from our
evolutionary design program. A description of a coevo-
lutionary method follows, including results in automated
amplifier design. Lastly we discuss our conclusions re-
lating to potential space-related applications of evolvable
hardware.

2 Circuit Representation

In designing an effective circuit representation for use in
evolutionary search, the following properties are among
the most desirable. First, the representation should per-
mit any circuit or at least a wide range of circuits to be
represented. If it is known a priori that certain topolo-
gies are well suited to a specific design task, topological
restrictions inherent in the representation may be bene-
ficial since the search space will be reduced. Conversely,
not having this limitation may bring to light novel de-
signs that human designers have never envisioned. Sec-
ond, the genotype conversion algorithm (the circuit con-
structing process) should run as fast as possible. Clearly
if numerous traversals of the circuit graph structure are
required in order to guarantee a valid circuit graph, the
performance hit will be commensurate. Third, the rep-
resentation should be syntactically closed so that genetic
operators do not create invalid circuit graphs1 from those
that are valid. The circuit representation we present here
was designed to have these properties.

Circuit designs are constructed by an automaton that
is programmed via a set of low-level instructions. This
automaton is programmed in a small “language” de-
signed for building circuits. In its current incarnation,
the language contains only component-placing instruc-
tions (e.g., control instructions are not included). This
language has the desirable property that virtually all
possible sequences of instructions result in a valid electri-
cal circuit. This property is important because it greatly
limits the “out-of-bounds” regions of the search space
containing invalid circuit graphs. Thus, evolutionary
search will spend nearly all its time generating valid
circuit graphs. While this is a beneficial, non-trivial
achievement, we do lose the ability to generate every
possible circuit topology. This is not considered a draw-
back for the circuit types we investigated since a vast
number of topologies and existing circuit designs could
be encoded using this approach.

Each instruction places a circuit component and di-
rects the movement of the automaton. The five ba-
sic instruction types are: x-move-to-new, x-cast-to-

1Note that a graph could be a valid circuit graph, yet not
make sense as an electrical circuit – for example, dissimilar voltage
sources connected in parallel.

previous, x-cast-to-ground, x-cast-to-input, x-cast-to-
output, where x can be replaced by R (resistor), C (ca-
pacitor), L (inductor), or transistor configuration. In a
circuit design task involving only inductors and capaci-
tors (an LC circuit), ten opcodes would be available to
construct circuits (five for capacitors and five for induc-
tors).
The meanings of each instruction are summarized in

Table 1. The move-to-new instruction places one end of
a component at the active node and the other at a newly
created node (the “active” node is the current location of
the automaton). The newly created node then becomes
the active node. The cast-to instructions place one end
of the component at the active node and the other at
either the ground, input, output, or previously-created
node. After executing a cast-to instruction, the automa-
ton remains at the active node. The input and output
nodes are the overall input and output nodes of the cir-
cuit as opposed to the input and output of the placed
component. Illustrations of two instructions that place
resistors are shown in Fig. 1.

Instruction Outgoing Node Active Node

x-move-to-new new node becomes new node
x-cast-to-previous previous node unchanged
x-cast-to-ground ground node unchanged
x-cast-to-input input node unchanged
x-cast-to-output output node unchanged

Table 1: Summary of opcode types used in current sys-
tem. x denotes the component type: resistor, capacitor,
inductor, or transistor configuration.

active
node

R

result of move-to-new instruction

active
node

active
node

active
node

result of cast-to-ground instruction

circuit
under

construction

circuit
under

construction

circuit
under

construction

circuit
under

construction R

(a)

(b)

Figure 1: Effect of placing a resistor with (a) move-to-
new, and (b) cast-to-ground instructions.

The circuit is constructed by the automaton inside of
a template circuit. The design tasks presented here use
a template having one input and one output terminal as
shown in Fig. 2. An ideal voltage source vs is connected
to ground and to a source resistor Rs. The circuit’s
output voltage is taken across a load resistor Rl.
The lists of instructions manipulated by the GA are

variable-length lists so that the size of the circuit can be

evolved
circuit

vs

end nodestart node

~

output
voltage

Rl

Rs

Figure 2: Template circuit: the evolved circuit is located
between fixed input and output terminals. vs is an ideal
voltage source, Rs is the source resistance, Rl is the load
resistance.

evolved. When the automaton reaches the last compo-
nent to place in the circuit, we arbitrarily chose to have
the last active node connected to the output terminal by
a wire (accomplished by connection of a 1µΩ resistor).
By doing so, we eliminate unconnected branches.
As assembly language instructions are mapped to op-

codes, our circuit-placing instructions are mapped to
bytecodes. Instructions are represented by up to four
bytecodes. For instructions that take a component value
as an argument, the first byte is the instruction, and the
next three represent the component value (resistance, ca-
pacitance, and inductance values). For transistors, com-
ponent values are not needed. Using three bytes allows
the component values to take on one of 2563 values, a
sufficiently fine-grained resolution. The raw numerical
value of these bytes was then scaled into a reasonable
range, depending on the type of component. Resistor
values were scaled sigmoidally between 1 and 100K ohms
using 1/(1 + exp(−1.4(10x − 8))) so that roughly 75%
of the resistor values were biased to be less than 10K
ohms. Capacitor values were scaled between approxi-
mately 10 pF and 200 µF and inductors between roughly
0.1 mH and 1.5 H.
Transistors are current amplifying and switching de-

vices that have three terminals.2 In this paper we use
bipolar junction transistors as shown in Fig. 3. Using
devices with three terminals makes it harder to design a
circuit representation that achieves the properties that
we desire. If a circuit constructing automaton were to
connect one terminal of a transistor at a node, then two
active nodes would result each requiring its own automa-
ton. This could happen repeatedly resulting in an expo-
nential growth of automata constructing the circuit in
parallel. Two problems are obvious: how will the mul-
tiple constructing “threads” interconnect, and how will
the dangling nodes that will likely appear at the end of
the circuit constructing process be handled? To allow
interconnections between constructing threads, one can
introduce a spatial dimension and let the automata form
interconnections as they criss-cross each other’s path. To

2Four if the substrate terminal is included, but we connect the
substrate to ground and hence ignore it.

handle the dangling node problem, one can determinsti-
cally tie dangling nodes to each other, to internal nodes,
or to the output node for example. Another solution is
to simply prune those nodes. Although we have consid-
ered these and other solutions, a simpler way of handling
transistors is also a viable alternative: treating them as
having only two terminals.

(a) (b)

collector

base

emitter

collector

base

emitter

Figure 3: Bipolar junction transistor symbols: (a) npn;
(b) pnp.

To work with transistors as devices with two termi-
nals, we have the third terminal hardwired (fixed) to
one of the following pre-existing circuit nodes: ground,
power supply (positive or negative), input, output, the
previously placed node, or even to itself. Such a scheme
allows a wide variety of configurations. To understand
these configurations we label the terminals in a generic
way: incoming, outgoing, and fixed (see Fig. 4). The
incoming terminal is the terminal that the circuit con-
structor will connect to the active node. The outgoing
terminal will become the new active node (for move-to
instructions) or it will be cast to a pre-existing circuit
node. The fixed terminal is hardwired as its name im-
plies.

(a) (b)

incoming outgoing incoming outgoing

fixed

Figure 4: Labeling of terminals: (a) devices with two
terminals have incoming and outgoing terminals; (b) de-
vices with three terminals are treated as two-terminal
devices by having a fixed connection at the third termi-
nal.

To give a sense of the types of transistor configura-
tions possible, the chart in Fig. 5 illustrates 52 config-
urations for an npn transistor whose base terminal is
designated incoming. Each entry shows the connections
that the automaton makes when executing the instruc-
tion listed in the first column. The last two columns
show self-connections, some of which are frequently used
by circuit designers. Similar charts can be produced for
npn transistors having the collector and emitter serve
as the incoming terminal, as well as the three analogous
charts for pnp transistors. There are configuration re-
dundancies so that each chart will not have exactly 52
configurations. In addition we exclude emitter-collector

self-connections since this shorts out the transistor.

This approach to representing circuits embodies the
desirable properties outlined above. The encoding has
syntactic closure since any combination of instructions
produces a valid circuit graph, and since every instruc-
tion contained in the genome results in a circuit com-
ponent, there are no non-coding genome segments. The
circuit construction process is O(n) since it does not re-
quire any repair operations (e.g., removal of unconnected
nodes). Lastly, this approach can generate a wide range
of circuit graph topologies. The topological restriction is
as follows: circuit branches off of the main constructing
thread cannot, in general, contain more than one node
(there are some exceptions to this). The constructing
thread is the sequence of components that are created by
the move-to-new instructions. The constructing thread
itself can be of varying lengths and can contain both
series and parallel configurations. In spite of these lim-
itations, our system allows the creation of circuits with
a large variety of topologies, including numerous topolo-
gies seen in hand-designed circuits.

3 Design Tasks

The design tasks considered in this paper are analog cir-
cuts for filtering and amplification applications.

A low-pass filter is a circuit that allows low frequen-
cies to pass through it, but stops high frequencies from
doing so. In other words, it is frequency selective in that
it “filters out” frequencies above a specified frequency.
The unshaded area in Fig. 6 depicts the region of op-
eration for low-pass filters. Below the frequency fp the
input signal is passed to the output, potentially reduced
(attenuated) by Kp decibels (dB). This region is known
as the passband. Above the frequency fs, in the re-
gion is called the stopband, the input signal is markedly
decreased by Ks decibels. Between the passband and
stopband the frequency response curve transitions from
low to high attenuation. The parameter located in this
region, fc, is known as the cutoff frequency.

One of the design tasks concerned designing a circuit
within the class of “Butterworth” filters. Butterworth
filters are very common and circuits that implement
them are readily found in filter design tables [9]. The
attenuation (negative gain) of Butterworth filters is of
the form

√
1/(1 + (f/fc)2N) where f is the input fre-

quency and N is the order of the filter. The higher order
a filter has, the sharper the “knee” of its gain curve, and
the more complex the circuit. A plot of the attenuation
for a third-order Butterworth filter is shown in Fig. 7.

The amplifier design task chosen was the inverting op-
erational amplifier. Such a circuit has found wide appli-
cation and is considered one of the workhorses of analog
circuit design. Figure 8 shows the symbol and connec-
tions for an ideal inverting amplifier. This circuit gen-
erates an output voltage (vo) that consists of the input

CAST-TO-PREVIOUS

CAST-TO-INPUT

CAST-TO-OUTPUT

CAST-TO-GND N.A.

MOVE-TO-NEW

new

output

input

previous

N.A.

new

output

input

previous

new

output

input

previous

new

output

input

previous

gnd

gnd

new

output

previous

new

output

previous

gnd

gnd

INPUT

INPUT

INPUT

INPUT

N.A. N.A.

INPUT

INPUT

INPUT

INPUT

new

previous

new

previous

gnd

gnd

OUTPUT

N.A. N.A.

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

input

input

OUTPUT

OUTPUT

N.A.

new

output

input

N.A.

new

output

input

new

output

input

previous

new

output

input

previous

gnd

gnd

PREV

PREV

PREV

PREV

PREV

PREV

gnd

gndPREV

PREV

collector
to

GND

emitter
to

GND

collector
to
PS

emitter
to
PS

collector
to

INPUT

emitter
to

INPUT

collector
to

OUTPUT

emitter
to

OUTPUT

collector
to

PREV

emitter
to

PREV

collector
to

base

emitter
to

base

Instruction
Type

Outgoing and Fixed Terminals Connections

Figure 5: Transistor configurations showing the outgoing and fixed connections when the incoming terminal is the
transistor’s base terminal. Terminals labeled in upper case letters denote the fixed terminal connection. In the last
two columns the fixed connection is a self-connection. “PS” denotes the power supply (only the positive version is
shown), and “N.A.” denotes “not applicable.” Only npn transistors are shown although analogous configurations are
present for pnp transistors.

at
te

n
u

at
io

n
 (

d
B

)

Ks

stopbandpassband

fp fc fs

frequency

Kp

Figure 6: Low-pass filter terminology and specifications.
The shaded regions represent out-of-specification areas.
An example frequency response curve that meets speci-
fications is shown.

voltage (vi) multiplied by a gain factor, A. Voltage gain
is thus equivalent to vo/vi. It is common to express gain
values in decibels (dB) using 20 log10(A). Amplifiers may
be either inverting or non-inverting, where an inverted
output signal has a 180◦ phase shift compared to the in-
put. The dc gain of the amplifier refers to the gain when
only constant voltage/current sources are applied. The
linearity of the gain is the degree to which the gain re-

-100

-80

-60

-40

-20

0

0.1 1 10 100 1000 10000

ga
in

frequency

Figure 7: Gain on a logarithmic amplitude scale for a
third-order Butterworth filter.

mains constant across input voltages: ideally the voltage
transfer characteristic (vo vs. vi) should be linear. The
dc component that shifts the entire signal up or down is
called the dc bias of the circuit. Power dissipation is the
amount of power used by the circuit and is indicative of
the amounts of current flowing in the circuit. For simple
amplifiers, there are publications available that catalog
many designs. Since there are numerous parameters in
amplifier design (e.g., input/output impedance, power

vs ~

Rs

RFB

-

+

vo

vo
vs

RFB

Rs
A = =

Figure 8: Ideal inverting amplifier showing how gain is
set by the ratio of the feedback to source resistor.

dissipation, distortion, common-mode rejection, power
supply rejection), the design task can become quite chal-
lenging and typically requires an experienced designer.
For the amplifier design experiments below, we take into
account four objectives: dc gain, linearity of gain, dc
bias, and power dissipation.

4 Experimental Results

Filter Design Tasks

Three filter design experiments were performed. In each
experiment, 10 runs were performed and we present the
circuit having the highest fitness value across all runs.
The experiments increased in difficulty so that filter 3
represents a challenging design task, while filter 1 is least
challenging. Table 2 lists the target specifications for
each of the experiments.

Filter No. fp (Hz) fs (Hz) Kp (dB) Ks (dB)

1 100 4000 1.29 27.12
2 925 3200 3.01 22.00
3 1000 2000 0.01 63.50

Table 2: Target specifications for filter design tasks.

The GA parameters remained the same within a given
experiment, but varied in the number of evaluations
(circuit simulations): filter 1 runs had 30,000 evalua-
tions, filter 2 had 3.6 million, and filter 3 had 1 million.
These values were arrived at by experimentation and
constrained by practical issues such as the availability
of workstations.
For the filter experiments, fitness was calculated to

promote the regression of the evolved circuit’s frequency
response toward that of the target. Error values were
computed as the absolute value of the difference of the
individual’s output and the target output. These error
values were summed across evaluation points to arrive
at a fitness value.

Electronic Stethoscope Circuit – The first filter design
task was set up to generate a filter suitable for use in

an electronic stethoscope. In this application, it is de-
sired to filter out the extraneous high-frequency sounds
picked up by a microphone which make it difficult to lis-
ten to (low-frequency) bodily sounds (e.g., a heart beat-
ing). As such, the frequency response specifications do
not need to be extremely accurate since the human ear
cannot discern frequencies that are close together. The
target frequency response data was taken from an actual
electronic stethoscope, which was built with a cutoff fre-
quency of 796 Hz corresponding to an output voltage of
approximately 1 volt. This circuit is relatively easy to
design and so we chose it as our first design task. The
cc-bot instruction set consisted of ten instructions, five
for resistors and five for capacitors, which allowed for the
construction of an RC low-pass filter. The evolved circuit
is shown in Fig. 9(a) and its frequency response, which
matches almost exactly the target is shown in Fig. 9(b).
It was found in generation 3 of a 10-generation run that
had a population size of 3000, an indication that this
design task was relatively easy. The circuit exhibits the
standard design for simple low-pass filters: a resistor
(R2) in series with the source to form a voltage divider
at low frequencies (C1 open), and a capacitor (C1) across
the output to short it at high frequencies.

R1 1

+

-
5V

V1 C1 0.000162 671.8973R3 RL

1E14

5.806489

R2

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000

Vo
lts

Frequency (Hz)

Target
Output

(b)

Figure 9: (a) Evolved low-pass filter for use in an elec-
tronic stethoscope (units are ohms and farads); (b)
Nearly identical frequency response curves for evolved
and actual electronic stethoscope circuit. The frequency
axis is scaled logarithmically.

Butterworth Low-pass Filter – The second low-pass filter
design task had specifications that were more difficult to

achieve than the first filter: both the passband and the
stopband were longer, thus requiring the transition to
be sharper. We chose a circuit that can be built using
a 3rd-order Butterworth filter and having a frequency
response of the form seen in Fig. 7. The specifications
are listed under filter number two in Table II.
Such a filter design can be derived using a ladder topol-

ogy containing two capacitors and one inductor and com-
ponent values found in published tables. Because we
wanted to design an LC low-pass filter, the cc-bot in-
struction set consisted of only capacitor and inductor
instructions. The evolved circuit that meets these spec-
ifications is shown in Fig. 10 and its frequency response
is shown in Fig. 11. It was found in generation 22 of a
run that had a population size of 18,000.

C2

3.0245E-7

0.16886

L4Rs
1K

+

-
2V

V1

C1

0.0000780.77637

L2
L5

0.50176

0.28838

L1

1K
RL

1.14991

L3

Figure 10: Evolved 3rd-order Butterworth low-pass filter
(units are ohms, farads, and henries).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

V
ol

ts

Frequency (Hz)

Kp=3.01 dB Ks=22 dB

Figure 11: Frequency response curve for evolved 3rd-
order Butterworth low-pass filter. Attenuation specifi-
cations are also shown. The frequency axis is scaled
logarithmically.

Third Low-pass Filter – The third low-pass filter design
task had specifications that were the most stringent: in
addition to the passband and stopband being increased,
the attenuation parameters were tightened (see Table II).
These specifications are similar to the fifth-order elliptic
filter described in [10]. In that work, the evolved LC
circuit satisfies Kp = 0.3 dB and Ks = 60 dB. Another

evolved low-pass filter circuit [23] had the same stopband
and passband frequencies, but less demanding attenua-
tion specifications (Kp = 1.6 dB and Ks = 24.8 dB).
The evolved circuit is shown in Fig. 12 and its frequency
response is seen in Fig. 13. Micro-ohm resistors were
added as a convergence aid for the circuit simulator, and
can be ignored for analytical purposes. This circuit was
found in generation 997 of a run that had a population
size of 1000.

L3

7.713100e-01

C4

2.519509e-05

C6

1.261844e-04

1.017696e-03

L6

1.083701e-04

C1

2.008357e-01

L4

0.25536662

L11

0.659257

L8 R5

1u 0.22130646

L13 R3

1u

1.048100e-07C5

R1

1.042709e+04

9.862769e-05

C3

2.449500e-07

C7

2.506300e-07

C8

1.256400e-07

C9

2.147189e-01

L1
5.285780e-03

L2

RS
1k

+

-2v

VS

C2

3.547581e-05

R2

3.648645e+04

1kRL

L9

3.300694e-01

1u

R6L5

2.113217e-01

0

2 6 7 8 9 1031

Figure 12: Evolved circuit satisfying target specifications
for filter number three.

0

0.2

0.4

0.6

0.8

1

700 900 1100 1300 1500 1700 1900 2100 2300

V
ol

ts

Frequency (Hz)

Within
specifications

Output from evolved circuit

Target response

Figure 13: Frequency response for filter number three.

Amplifier Design Tasks

Two amplifier design experiments were performed. In
each experiment, 10 runs were performed and we present
the highest performance circuits found across all runs.
The goal was to design an inverting amplifier capable
of a dc voltage gain up to a maximum of either 100 dB
or 120 dB, while minimizing dc bias and maximizing
linearity over the dc gain. Population size was set to
1200 individuals, and each run proceeded for 5000 gen-
erations, giving a total of 6 million circuit evaluations

per run. The difference between the two sets of exper-
iments is that in the first set, the maximum gain was
set to be 120 dB, and in the second set, 100 dB was the
maximum gain. The maximum gain possible is set by
using feedback resistors (labeled RFB). For an ideal in-
verting amplifier (as shown in Fig. 8), the magnitude of
the gain of the amplifier is simply RFB/RS , where RS
is the source resistor. Fitness was calculated in a man-
ner similar to the work on amplifiers in [10]. An error
value is computed as the sum of the dc gain penalty (the
target gain minus the observed gain), the dc bias (zero
dc bias is ideal), and the degree to which the dc gain is
linear.

75 dB Inverting Amplifier – In the first set of exper-
iments the maximum voltage gain was set at 120 dB
(106). The amplifier having the best performance had
a dc gain of 74.53 dB (5324.40). Figure 14 shows the
schematic for this circuit. It was found in generation
4866, and had a dc bias of 3.64 volts and a power dissi-
pation of 0.82 watts.

Q3

6.379114e+04
R1

Q6

Q5

Q8

Q9

1e-06
R2

Q7

Q1

RSRC
100

Q4

Q2

+

-
VSRC

100
RLOAD

1e8

RFB

0

+15v

0

+15v

+15v

0

0

0

3

4

7

6

5

8

2

2551

Figure 14: Circuit schematic of evolved 75 dB amplifier.

The dc behavior is best understood by examining the
major current pathways in the circuit. The current
through the load is the key quantity since it is converted
to a voltage by the load resistor and hence forms the
circuit’s output. Nearly all of the dc current flowing
through the load resistor originates from the power sup-
ply connected to transistor Q7’s collector. Q7 is biased
in such a way as to supply Q8’s base with approximately
36.4 mA of current. This current is divided so that
18.1 mA flows out of Q8’s emitter and 18.3 mA out of
Q8’s collector. Resistor R2 is a tiny resistance that was
positioned in order to connect transistor Q9 to the out-
put (the last component is forced to connect to the out-
put terminal). Thus R2 can be ignored, and transistor
Q9’s 18.4 mA current flows into the output node. Cur-
rents are summed at node 255 to give the load current of
36.4 mA which flows through the load resistance to give
3.64 volts output. Because there is a negligible amount of
current flowing through transistors Q1 through Q4, the

utility of these transistors is unclear. Components that
are essentially non-functional, are quite commonly seen
in evolutionary design applications. Figure 15(a) shows
the time domain response. Amplification of a 1 kHz sine
wave having a 1 microvolt amplitude can clearly be seen.
Figure 15(b) shows the frequency response. The ac gain
remains flat at 74.36 dB until it loses 3 dB at 7.59 kHz
(its 3 dB bandwidth). Figure 16 shows the dc transfer
characteristic. The dc bias of 3.64 volts can be seen at
the voltage input of zero volts.

0s 2.0ms 4.0ms 6.0ms 8.0ms

 Time

5.0uV

-5.0uV

3.65V

3.63V

input waveform
(microvolt scale)

output waveform
(volt scale)

(a)

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz

 Frequency (Hz)

80

70

60

50

G
a

in
 (

d
B

)

(b)

Figure 15: Small signal behavior of 75 dB evolved ampli-
fier: (a) time domain input waveform is 1 kHz (bottom)
which is inverted and amplified (top); (b) frequency re-
sponse showing 3 dB bandwidth of 7.59 kHz.

85 dB Amplifier – In the second set of amplifier exper-
iments the maximum voltage gain was set at 100 dB
(105). The amplifier having the best performance had
a dc gain of 85.41 dB (18, 642.33). Figure 17 shows the
schematic for this circuit. It was found in generation
3635, and had a dc bias of 5.44 volts and a power dis-
sipation of 8.17 watts. The dc current delivered to the
load is mostly supplied by the 15 volt battery attached
to the collector of transistor Q7. Transistor Q7 is con-
ducting with the sum of its base and collector currents
flowing out of its emitter. Q7’s base current of 13 mA is
supplied by transistor Q6. As in the previous amplifier,
the utility of transistors Q1 through Q3 is unclear.

-10uV -5uV 0V 5uV 10uV

 Input Voltage

3.70V

3.65V

3.60V

3.55V

O
u

tp
u

t
V

o
lta

g
e

Figure 16: DC transfer characteristic of 75 dB amplifier.

Q4
Q6

+

-
VSRC

Q3

Q5
R2
9.396477e+04

Q7

R1
4.618467e+04RSRC

10

Q1

1.628423e-04

C1

Q2

RFB 1e6

1e-06

R3

10
RLOAD

0

+15v1

2

3

4

5

6

Figure 17: Circuit schematic of evolved 85 dB amplifier.

Input signal inversion and amplification are seen in
Figure 18(a) which shows the time domain response to an
ac input of 1 microvolt at 1 kHz. The circuit has a flat-
band gain of 85.46 dB and a 3 dB bandwidth of 282.8 kHz
(Figure 18(b)). The 3 dB bandwidth is significantly bet-
ter than the previous amplifier. Figure 19 shows the
dc transfer characteristic. The dc bias of 5.44 volts can
be seen at the voltage input of zero volts. The slope,
the magnitude of which is the gain, is negative since the
amplifier is inverting the signal.

5 Coevolution and Other Fit-

ness Schedules

Using the same amplifier design task described above,
we now turn our attention to comparing four methods
of evolutinary search. A fitness schedule is contruct that
modifies how a circuit’s fitness is computed during the
GA run. For example, one could use a fitness function
f1 during generation 1, f2 during generation 2, etc. Four
fitness schedules, one of which embodies coevolutionary
concepts, are discussed below.

The first, called static for short, refers to a single fit-

0s 2.0ms 4.0ms 6.0ms 8.0ms

 Time

5.0uV

-5.0uV

5.5V

5.4V

input waveform
(microvolt scale)

output waveform
(volt scale)

(a)

1.0Hz 100Hz 10KHz 1.0MHz 40MHz

 Frequency (Hz)

100

50

0
G

a
in

 (
d

B
)

(b)

Figure 18: Small signal behavior of 85 dB evolved ampli-
fier: (a) time domain input waveform is 1 kHz (bottom)
which is inverted and amplified (top); (b) frequency re-
sponse showing a flatband gain of 85.46 dB.

ness function that is used to evaluate every individual
in every generation of the run. The second was a fixed
fitness schedule, meaning that the fitness function was
modified in a pre-determined manner every k genera-
tions, for some constant k. Thus the same fitness func-
tion evaluates groups of kM individuals, whereM is the
population size. The third fitness schedule we call adap-
tive because it can change the fitness function dynami-
cally based on the performance of the population. The
fourth fitness schedule is coevolutionary search whereby
a second of population consisting of problem difficulties
(target vectors) evolve based on the performance of the
circuits in the main population.

Static Fitness Schedule

The static fitness schedule is simply the standard evalu-
ation technique in genetic algorithms [7]: a single fitness
function is used to evaluate all individuals throughout
the run. The fitness function used is similar to those
described in [10, 13]. Briefly, it is a sum of normalized
error values, where the errors are the shortfalls from the
desired objectives: dc gain, dc bias, power dissipation,
and the linearity of the dc gain. The gain is the slope

-10uV -5uV 0V 5uV 10uV

 Input Voltage

5.8V

5.6V

5.4V

5.2V

O
u

tp
u

t
V

o
lta

g
e

Figure 19: DC Transfer characteristic of 85 dB amplifier.

of the dc transfer characteristic (i.e., the output volt-
ages when the input voltage is swept across five input
voltages). The slope, m, is calculated by using the end-
points of the transfer characteristic. The linearity of the
gain is computed as |m−ml|+ |m−mr|, where ml is the
slope of the line segment formed by the two leftmost out-
put voltages and mr is analogous for the two rightmost
output voltages. The dc bias is simply vo when vi = 0
volts, and power dissipation is the amount of power con-
sumed during circuit operation. The gain objective was
60.0 dB, the bias and power dissipation objectives were
1.0 volt and 1.0 watt, respectively, and the linearity ob-
jective was 10.0. These values were chosen based on our
previous work [14]: they represent a moderately difficult
design task that we knew to be solvable.

Fixed Fitness Schedule

The fixed fitness schedule is a pre-determined schedule
of fitness function modifications. As used in the ex-
periments below, the difficulty-level of the fitness func-
tion is increased every 50 generations. With a total of
5000 generations, this allowed for a total of 100 “dif-
ficulty steps.” Each of the fitness functions used over
the course of the run are of the same form as the fit-
ness function used in the static schedule above. Writing
our gain, bias, power, and linearity objectives as a tar-
get vector, 〈G,B, P, L〉, we specified that the difficulty
level begins at 〈1.0, 10.0, 10.0, 1000.0〉 (easiest) and ends
at 〈60.0, 1.0, 1.0, 10.0〉 (most difficult). The increases in
difficulty are then evenly divided over the 100 steps, per
objective. This is admittedly an arbitrary schedule, but
that is an inherent property of a fixed schedule - it is sub-
ject to the biases of the implementor. Such biases can
be advantageous if knowledge of the fitness landscape is
known a priori, and potentially disadvantageous other-
wise.

Adaptive Fitness Schedule

The adaptive fitness schedule is identical to the fixed
schedule described above except in the following re-
gard: difficulty is incremented “on-demand,” whenever
the current difficulty is solved by at least one circuit in
the population. As in the fixed schedule case, 100 diffi-
culty steps are provided for. If a circuit solves the 100th
fitness function before 5000 generations, it has success-
fully found a compliant circuit, and the run halts. On the
other hand, if 5000 generations elapse and a compliant
circuit is not found, the run halts at whatever difficulty
level it has reached.

Coevolving Fitness Schedule

The main difference between the coevolving fitness
schedule and the other dynamic schedules is the in-
troduction of a second population consisting of target
vectors (tv). The first population of circuits remains
the same as in the other fitness schedules. The tar-
get vector population consists of individuals that spec-
ify problem difficulty. As described above, target vec-
tors are denoted 〈G,B, P, L〉, representing gain, bias,
power dissipation, and gain linearity, respectively. The
individual targets are threshold values – a target is
“solved” if a circuit’s performance equals or surpasses
(either above or below, as appropriate) the thresh-
old specified. For example, 〈63.0, 0.6, 0.8, 9.5〉 solves
〈60.0, 1.0, 1.0, 10.0〉, but 〈58.0, 0.6, 1.2, 18.0〉 does not. As
with the other fitness schedules, the ideal target vector
used was 〈60.0, 1.0, 1.0, 10.0〉. The gain target is satisfied
if a circuit’s gain was 60.0 decibels or greater. The three
remaining targets were satisfied if the circuit’s perfor-
mance is less than or equal to the target values.
Target vectors are represented as a list of floating point

values that are mutated individually by randomly adding
or subtracting a small amount (5% of the largest legal
value). Single point crossover was used, and crossover
points were chosen between the values.
Fitness of individual circuits in the main population

was computed as follows. Circuit i “plays” each target
vector in the second population and a score, si, is com-
puted:

si =
∑
j∈t̂vi

1

total # circuits
that solve tvj

where t̂vi is the set of target vector indexes such that
circuit i solves tvj . Note that the denominator in the
above fraction is guaranteed to be greater than or equal
to one due to the restriction on j. Then si is normalized
linearly between its upper and lower bounds such that
0.0 is the best score and 1.0 the worst:

F (circuiti) = 1.0− si/M2

where M2 is the size of the target vector population.
The effect of s is to reward circuits that solve the more

difficult target vectors. A target vector has the greatest
difficulty level when exactly one circuit can solve it. If
many circuits can solve a particular target vector, the
fitness contribution in s is shared among the circuits [16].
Fitness of an individual target vector is computed as

follows. Let xj denote the number of circuits that solve
tvj , andM1 be the circuit population size. The fitness is
essentially xj , scaled and normalized, with a tractability
constraint:

F (tvj) =

{
1.0 xj = 0

1
(M1−1)

(xj − 1.0) xj ≥ 1

The tractability constraint gives a target vector a score
of 1.0 (the “worst” score) when no circuits can solve it.
This puts pressure on the target vector population to
pose difficult, yet solvable problems to the circuit popu-
lation.

6 Experimental Setup

Using the four fitness schedules described above, 25 runs
using each schedule were made resulting in a total of 100
runs. The same pseudo-random number generator seed
was used across each set of four distinct fitness sched-
ules so that the generation zero individuals would be
identical. Common to each run were the following pa-
rameter settings: population size was 600, crossover rate
was 80%, mutation rate was 5%. For the coevolution
runs,the target vector population used the following pa-
rameters: population size was 600, crossover rate was
80%, mutation rate was 50%. Because crossover points
were chosen between target vector values, this mutation
rate was set high to encourage new values to appear in
the population, not just those produced in generation 0.
Evolution of amplifier designs was accomplished us-

ing the system described in [13]. Briefly, circuits are
represented as lists of circuit-construction instructions
that program an automaton to design a circuit. Resis-
tors, capacitors, and bipolar junction transistors were
the allowed components. The method of incorporating
transistors is described in [14]. Circuits were required to
contain at least 10 components up to a maximum of 150.

7 Experimental Results

To assess the quality of each fitness schedule, we exam-
ined the highest fitness circuits from each run. The per-
formance of these circuits is quantified in corresponding
output vectors which, like target vectors, specify gain,
bias, power dissipation, and linearity values. Table 3
gives the mean values of individual objectives across out-
put vectors for each fitness schedule. The data suggest
that static and coevolving fitness schedules performed
better than fixed and adaptive schedules. Another way
of measuring the quality of the fitness schedules is to look

fitness gain bias power linearity
schedule [dB] [volts] [watts] [unitless]

static 44.47 0.35 0.69 49.28
fixed 47.59 0.64 1.21 96.63
adaptive 54.13 1.23 1.96 340.74
coevolving 46.71 0.15 0.41 189.75

Table 3: Mean values from the performance of the best
circuits found under 25 runs of each fitness schedule. The
ideal target vector was 〈60.0, 1.0, 1.0, 10.0〉.

fitness
schedule mean std. dev.

static 2.12* 0.67
fixed 1.48 1.12
adaptive 1.16 1.18
coevolving 2.08* 0.49

Table 4: Mean and standard deviation for the number
of objectives solved for 25 runs of each fitness schedule.
Means marked with asterisks (*) are not significantly
different from each other, and are significantly different
(p < 0.02) from those means without asterisks.

at the number of objectives solved in each run (assum-
ing each of the four objectives is of equal importance).
Table 4 shows the mean and standard deviation for the
number of objectives solved for each schedule.

Here the relationship among the schedules is clearer:
static and coevolving fitness schedules performed nearly
the same and did better than the performance of the
fixed and adaptive schedules. A two-tailed t-Test showed
that the static and coevolving means are not significantly
different from each other, and are significantly different
(p < 0.02) from the fixed and adaptive means.

One of the motivations behind using coevolutionary
search is the notion that the problem difficulty is ad-
justed automatically, rather than having to manually
specify it. To get a sense of how coevolution accom-
plished this, Figure 20 shows four plots (one for each
target objective), each containing 25 curves (fitted using
a fourth-order polynomial). The plots show how the val-
ues of the best target vectors found in each generation
fluctuated during the run. The thick curve represents
the run that found a compliant circuit (i.e., it solved
〈60.0, 1.0, 1.0, 10.0〉).

What is most striking is the way coevolution, within
the first few generations, reduced the demands for gain
performance because it was the most difficult criterion
to meet. Just as rapidly, the other three objectives were
made more demanding because they were relatively easy
to satisfy. Then as the circuit population scored better in
gain, it did so at the expense of power and linearity: both
power and linearity are seen peaking near generations

1000-2000.

0

0.5

1

0

0.2

0.4

0.1
0

0.1
0.2
0.3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

generation

e
a

s
e

 o
f
s
o

lv
in

g
 t
a

rg
e

t

gain

power

bias

linearity

Figure 20: Highest fitness target vector values over the
course of all coevolution runs. The y-axes represent the
difficulty of the objective with 0.0 being the target (or
most difficult) value, and 1.0 being the easiest objective
value. The thick curves represent the run that found
a compliant circuit. Curves were fitted using a fourth-
order polynomial, and therefore sometimes appear above
1.0 and below 0.0.

From the results it is seen that static and coevolution-
ary fitness schedules outperformed the fixed and adap-
tive schedules. Although is not completely clear why
this happened, we can offer potential advantages of the
static and coevolutionary schedules relative to the fixed
and adaptive schedules. First, because a static fitness
function induces a fitness landscape that never changes
over the course of evolution there is never the possibility
of getting “thrown off” a gradient (as would be the case
if the fitness function changed). Second, we designed
coevolution so that it would keep the level of problem
difficulty near the leading edge of circuit proficiency. De-
velopmental theory suggests (e.g., [1]) that keeping task
difficulty in line with solution performance aids learn-
ing. Third, the fixed and adaptive schedules are poten-
tially “handicapped” by the somewhat arbitrary choice
of manually-crafted schedules.

8 Discussion

As a step towards demanding space-related applications,
we have presented encouraging results of an evolvable
hardware system capable of automatically desinging ana-
log circuits. We showed that a linear circuit representa-
tion and evolutionary search can automatically produce
circuit designs of low to medium difficulty in two appli-

cations. Detailed simulations of the evolved designs sug-
gest that all are electrically well behaved and thus suit-
able for physical implementation. The circuit represen-
tation method devised permits a wide range of circuits
to be constructed, and results in a construction process
that is unburdened with repair operations. In addition,
the representation is syntactically closed, making it well
suited for evolutionary search. For other applications,
the instruction set can be easily extended to incorporate
other devices not mentioned, such as CMOS transistors.
The main limitation of our approach is the inherent re-
striction on circuit topologies. Such restrictions can be
overcome by augmenting the instruction set, and this is
one line of investigation we are pursuing. To gain perfor-
mance on par with circuits designed by engineers, it will
be necessary to place further constraints into the fitness
functions. For example, practical amplifiers are typically
judged by a dozen or so specifications. To evolve an am-
plifier that would perform as well would require using
a multiobjective fitness function that accounts for each
specification. Progress towards this goal was made in
the results from coevolutionary search.

Dynamic fitness schedules can help evolutionary
search because they encourage the population of circuits
to follow potentially better trajectories through the so-
lution space. Such trajectories could guide evolution in
many ways, for example they could amplify weak gradi-
ents in the fitness landscape, “steer around” meta-stable
solution states [16], and usefully decompose or simplify
the problem by providing partial reinforcement for in-
termediate solutions [4]. As an illustration, an amplifier
made up of a single wire has excellent performance in
terms of bias, linearity and power dissipation, but has
zero gain. Adding some components to the circuit might
increase the gain, but only at the cost of a dip in per-
formance on the other three criteria. Thus, if evolved
with a static fitness schedule (assuming equally-weighted
objectives), the single wire presents evolutionary search
with a meta-stable state that is highly attractive and po-
tentially quite difficult to escape. In contrast, the fixed
fitness schedule in the present amplifier design task en-
courages all of the performance objectives (gain, power
dissipation, bias, and linearity) to be solved in parallel by
evolution. Likewise, coevolution tends to work on gain
early in evolution and to scale back the requirements on
bias, power and linearity until circuits are performing
fairly well on gain.

In conclusion, static and coevolving fitness evaluations
did relatively well in our amplifier design task. Based on
our previous work in evolving amplifier designs, we sus-
pected that the static technique would be able to solve
this design task. We find it very encouraging that co-
evolution performed on par with static fitness schedules
and intend to pursue coevolutionary search in future cir-
cuit design tasks, especially for electronic control appli-
cations.

References

[1] J.L. Elman, Incremental Learning, or the Impor-
tance of Starting Small, Tech. Rept. 9101, Center
for Research in Language, University of California,
San Diego, CA, 1991.

[2] G. Gielen, W. Sansen, Symbolic Analysis for Auto-
mated Design of Analog Integrated Circuits, Boston,
MA: Kluwer, 1991.

[3] J.B. Grimbleby, “Automatic Analogue Network
Synthesis using Genetic Algorithms,” Proc. First
Int. Conf. Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications (GALESIA),
1995, pp. 53-58.

[4] G.L. Haith, S.P. Colombano, J.D. Lohn, D.
Stassinopoulos, “Coevolution for Problem Simplifi-
cation,” Proc. 1999 Genetic and Evolutionary Com-
putation Conference, (GECCO-99), 1999, to ap-
pear.

[5] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao,
T. Furuya, B. Manderick, Evolvable Hardware and
Its Applications to Pattern Recognition and Fault
Tolerant Systems, (Lecture Notes in Computer Sci-
ence), vol 1062, Berlin: Springer-Verlag, pp. 118–
135, 1996.

[6] T. Higuchi, M. Iwata, Eds., Evolvable Systems:
From Biology to Hardware, Proc. of the First In-
ternational Conference on Evolvable Systems, (Lec-
ture Notes in Computer Science), vol 1259, Berlin:
Springer-Verlag, 1997.

[7] J.H. Holland, Adaptation in Natural and Artificial
Systems, Univ. of Michigan Press, Ann Arbor, 1975.

[8] D.H. Horrocks, Y.M.A. Khalifa, “Genetically De-
rived Filters using Preferred Value Components,”
Proc. IEE Colloq. on Linear Analogue Circuits and
Systems, Oxford, UK, 1994.

[9] L.P. Huelsman, Active and Passive Analog Filter
Design, New York: McGraw-Hill, 1993.

[10] J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, F.
Dunlap, “Automated Synthesis of Analog Electrical
Circuits by Means of Genetic Programming,” IEEE
Trans. on Evolutionary Computation, vol. 1, no. 2,
July, 1997, pp. 109–128.

[11] J.R. Koza, F.H. Bennett, J.D. Lohn, F. Dun-
lap, M.A. Keane, D. Andre, “Use of Architecture-
Altering Operations to Dynamically Adapt a Three-
Way Analog Source Identification Circuit to Accom-
modate a New Source,” in Genetic Programming
1997 Conference, J.R. Koza, K.Deb, M.Dorigo,
D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo,
(eds), Morgan Kaufmann, 1997, pp. 213–221.

[12] M.W. Kruiskamp, Analog Design Automation us-
ing Genetic Algorithms and Polytopes, Ph.D. The-
sis, Dept. of Elect. Engr., Eindhoven University of
Technology, Eindhoven, The Netherlands, 1996.

[13] J.D. Lohn, S.P. Colombano, “Automated Analog
Circuit Synthesis using a Linear Representation,”
Proc. of the Second Int’l Conf on Evolvable Systems:
From Biology to Hardware, Springer-Verlag, Berlin,
1998, pp. 125-133.

[14] J.D. Lohn, S.P. Colombano, “A Circuit Represen-
tation Technique for Automated Circuit Design,”
IEEE Trans. on Evolutionary Computation, to ap-
pear.

[15] E.S. Ochotta, R.A. Rutenbar, L.R. Carley, “Syn-
thesis of High-Performance Analog Circuits in AS-
TRX/OBLX,” IEEE Trans. Computer-Aided De-
sign, vol. 15, pp. 273–294, 1996.

[16] C.D. Rosin, R.K. Belew, New Methods for Compet-
itive Coevolution, Tech. Rept. CS96-491, Depart-
ment of Computer Science and Engineering, Uni-
versity of California, San Diego, 1996.

[17] E. Sanchez and M. Tomassini, Eds., Toward Evolv-
able Hardware: The Evolutionary Engineering Ap-
proach, (Lecture Notes in Computer Science), vol
1062, Berlin: Springer-Verlag, 1996.

[18] M. Sipper, D. Mange, A. Perez-Uribe, Eds., Evolv-
able Systems: From Biology to Hardware, Proc. of
the Second International Conference on Evolvable
Systems, (Lecture Notes in Computer Science), vol
1478, Berlin: Springer-Verlag, 1998.

[19] M. Sipper, D. Mange, Eds., Special Issue on Evolv-
able Hardware IEEE Transactions on Evolutionary
Computation, vol 3, no 3, 1999.

[20] G.J. Sussman, R.M. Stallman, “Heuristic Tech-
niques in Computer-Aided Circuit Analysis,” IEEE
Trans. Circuits and Systems, vol. 22, 1975.

[21] A. Thompson, “An Evolved Circuit, Intrinsic in Sil-
icon, Entwined with Physics,” in T. Higuchi, M.
Iwata, Eds., Evolvable Systems: From Biology to
Hardware, Proc. of the First International Confer-
ence on Evolvable Systems, (Lecture Notes in Com-
puter Science), vol 1259, Berlin: Springer-Verlag,
pp. 390–405, 1997.

[22] J. Villasenor, W. Mangione-Smith, “Configurable
Computing,” Scientific American, vol 276, no 6, pp.
67–71, June 1997.

[23] R.S. Zebulum, M.A. Pacheco, M. Vellasco, “Com-
parison of Different Evolutionary Methodologies
Applied to Electronic Filter Design,” 1998 IEEE
Int. Conf. on Evolutionary Computation, Piscat-
away, NJ: IEEE Press, 1998, pp. 434–439.

Jason D. Lohn received the B.S. degree in electrical engineering
from Lehigh University, Bethlehem, PA, and the M.S. and Ph.D.
degrees in electrical engineering from the University of Maryland at
College Park. He is a Computer Scientist at NASA Ames Research
Center, Moffett Field, CA. Previously, he was a Visiting Scholar
at Stanford University, a Research Assistant at the University of
Maryland, and an Associate Engineer at IBM Corporation. His
research interests are in automated hardware synthesis, complex
adaptive systems, cellular automata, self-replicating systems, and
neural computation.

Gary L. Haith received the B.A. in Anthropology from the Uni-
versity of California, San Diego, and the M.A. and Ph.D degrees
Psychology (Computational Neuroscience) from Stanford Univer-
sity. He is a member of Phi Betta Kappa and a former National
Merit Scholar. He is a Computer Scientist at NASA Ames Re-
search Center, Moffett Field, CA. His research interests include
robotic control, collective robotics, coevolutionary search, and ma-
chine learning.

Silvano P. Colombano received the M.A. in Physics and the
Ph.D. in Biophysical Sciences from the State University of New
York at Buffalo. He has spent most of his working career at
NASA Ames Research Center first as a researcher in Closed Eco-
logical Life Support Systems and later in Artificial Intelligence.
He began the development work on the Astronaut Science Advisor
(a.k.a. PI-in-a-box) and managed the project until its deploy-
ment on SLS-2 (Space Shuttle STS-58) in 1993. Since then he
has been doing research and development work in Artificial Neu-
ral Networks, Genetic Algorithms and Artificial Life. He now leads
the BIOS (Biologically Inspired Optimization Systems) group in
the Computational Sciences Division at NASA Ames.

Dimitris Stassinopoulos is a Research Scientist at NASA
Ames Research Center. He has pursued his research interests at
Brookhaven National Laboratory, the Niels Bohr Institute, Den-
mark, and Oxford Univerity, England. He received a B.A. from
the University of Athens, Greece, and a Ph.D. from Boston Uni-
versity, both in Theoretical Physics. He has made contributions in
spatially-extended nolinear systems, fluid-dynamic modeling, ma-
chine learning, and origin of life studies.

